
MATH 147: GUIDELINES AND PRACTICE PROBLEMS FOR EXAM 2

Topics covered on Exam 2.

(i) Double integrals via iterated integrals and Fubini’s Theorem. Interchanging the order of integration.
(ii) Double integrals via polar coordinates.
(iii) Improper double integrals.
(iv) Various transformations of R2, their Jacobians and inverses, especially linear transformations, the

one-to-one property.
(vi) Double integrals using the change of variables formula.
(vii) Triple integrals, Fubini’s theorem, and changing the order of integration.
(viii) Various transformations of R3, their Jacobians, including spherical and cylindrical transformations.
(ix) Solving triple integrals with a change of variables formula, including spherical and cylindrical coor-

dinates.
(x) Students should be able to state various definitions and answer true-false questions about topics

covered since the first exam.

Practice problems.

1. OS Chapter 5: # 105: Find the volume under the graph of z = x3 above the region D in the plane
bounded by x = sin(y), x = − sin(y), x = 1, with π

2 ≤ y ≤ 3π
2 .

Solution. Without loss of generality, we interchange the roles of x and y, so that we want
∫ ∫

D
y3 dA, with

D pictured below.

,

where the brown line is that portion of y = sin(x) with π
2 ≤ x ≤ π and the blue line is that portion of

y = − sin(x), with ı ≤ x ≤ 3π
2 . The green line is the corresponding part of y = 1. Thus, the volume in

question is:

∫ π

π
2

∫ 2

sin(x)

y3 dy dx+

∫ 3π
2

π

∫ 1

−sin(x)

y3 dy dx.
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To calculate these integrals, we will need the formula sin4(x) = 3
8 − 1

2 cos(2x) +
1
8 cos(4x), which can be

derived from the double angle formulas for sine and cosine. For the first of the two integrals we have

∫ π

π
2

∫ 2

sin(x)

y3 dy dx =
1

4

∫ π

π
2

y4
∣∣∣∣y=1

y=sin(x)

dx

=
1

4

∫ π

π
2

1− sin4(x) dx

=
1

4

∫ π

π
2

1− (
3

8
− 1

2
cos(2x) +

1

8
cos(4x)) dx

=
1

4

∫ π

π
2

5

8
+

1

2
cos(2x)− 1

8
cos(4x) dx

=
1

4
(
5

8
x+

1

4
sin(2x)− 1

32
sin(4x))

∣∣∣∣π
π
2

=
1

4
{(5

8
π + 0− 0)− (

5

8
· π
2
+ 0− 0)}

=
5π

64
.

Either by symmetry or essentially the same calculation, the second integral also equals 5π
64 . Thus the required

volume is 5π
64 + 5π

64 = 5π
32 .

5. OS Chapter 5: #389: This problem asks to find the area of the triangle R:

,

by finding a linear transformation T from the uv plane such that T (0, 0) = (0, 0), T (1, 0) = (2, 0), and
T (0, 1) = (1, 3). This transformation will then take the triangle S in the uv-plane with vertices (0,0), (1,0),
(0,1) to R.

Solution. From class we seen that we can take T (u, v) = (2u+ v, 3v). It is easy to check that Jac(T ) = −3,
so that |Jac(T )| = 3. Thus,

area(R) =

∫ ∫
R

dA

=

∫ ∫
S

3 du dv

= 3 · area(S)
= 3,

as expected.
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5. OS Chapter 5: #391. Calculate
∫ ∫

R
(y2 − xy) dA, for R

,

for the given transformation.

Solution. The equations u = y − x and v = y, can be rewritten as x = v − u and y = v, which tells
us our transformation should be T (u, v) = (v − u, v). Substituting the vertices of R into the equations
u = y−x, v = y yields, vertices (0,0), (-1,0), (-1,1), (0,1) in the uv-plane, so that T transforms the rectangle
S = [−1, 0]× [0, 1] in the uv-plane to R in the xy-plane. IT is easy to see that Jac(T )| = 1, so that∫ ∫

R

(y2 − xy) dA =

∫ 1

0

∫ 1

0

vu dv du

=

∫ 1

0

u

2
du

=
1

4
.

5. OS Chapter 5: #431. Find the volume of the solid bounded by the cylinder x2 + y2 = 16, from z = 1 to
x+ z = 2.

Solution. We are finding the volume of the solid between the planes z = 1 and z = 2 − x, above the disk
D : 0 ≤ x2 + y2 ≤ 16 in the xy-plane. Notice that if x ≥ 1, then 2 − x ≤ 1 and if x ≤ 1, then 1 ≤ 2 − x.
Thus, the volume we seek is:∫ 1

−4

∫ √
16−x2

−
√
16−x2

(2− x)− 1 dy dx+

∫ 4

1

∫ √
16−x2

−
√
16−x2

1− (2− x) dy dx (⋆)

For the first integral in (⋆) we have∫ 1

−4

∫ √
16−x2

−
√
16−x2

(2− x)− 1 dy dx =

∫ 1

−4

∫ √
16−x2

−
√
16−x2

1− x dy dx

=

∫ 1

−4

(1− x)y

∣∣∣∣y=
√
16−x2

y=−
√
16−x2

dx

= 2

∫ 1

−4

(1− x)
√
16− 4x2 dx

≈ 71.78,

the last single integral being worked numerically, though one could use the standard (complicated) formula

for
∫ √

1− x2 dx typically found on the inside cover of a calculus book. Similarly, second integral in (⋆) is
approximately 21.51, so the required area is approximately 93.29.

3



2. Calculate
∫ ∫

D
(x+ y) dA, for D

,

using the transformation G(u, v) = ( u
v+1 ,

uv
v+1 ).

Solution. We need to find the region R in the uv-plan that G(u, v) transforms to D. We use the equations
of the lines bounding D. If y = x, then u

v+1 = uv
v+1 , from which we get v = 1. Similarly, the equation y = 2x

yields v = 2. The line in the xy plane containing (0,3) and (3,0) is y = −x+3. If we solve the corresponding
equation uv

v+1 = − u
v+1 + 1 for u we get u = 3. Similarly, the lime through (0,6) and (6,0) in the xy plane

gives rise to u = 6. Thus, the region R in the uv-plane is bounded by the lines v = 1, v = 2, u = 3, u = 6, so
that R = [3, 6]× [1, 2]. Calculating the Jacobian, we get

∂(x, y)

∂(u, v)
= det

(
1

v+1 − u
(v+1)2

v
v+1

u
(v+1)2

)
=

u

(v + 1)3
+

uv

(v + 1)3
=

u

(v + 1)2
.

Since 3 ≤ u ≤ 6, we have |∂(x,y)∂(u,v) | =
u

(v+1)2 . Thus,∫ ∫
D

(x+ y) dA =

∫ 6

3

∫ 2

1

(
u

v + 1
+

uv

v + 1
) · u

(v + 1)2
dv du

=

∫ 6

3

∫ 1

0

u2

(v + 1)2
dv du

=

∫ 6

3

u2(− 1

v + 1
)v=2
v=1 du

=
1

6

∫ 6

3

u2 du

=
1

6
(
63

3
− 33

3
)

=
21

2
.

3. Calculate
∫ ∫

D
exy dA, for D the region

,

by using the inverse of the transformation F (x, y) = (xy, x2y). Explain carefully how you obtain the domain
of integration in the uv-plane

Solution. To find G(u, v), the inverse of F (x, y), we use the equations u = xy and v = x2y to solve for
x and y in terms of u and v. These equations give u

x = y = v
x2 , and thus, u

x = v
x2 yields x = v

u . Since
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y = u
x , we infer y = u2

v . Thus, G(u, v) = ( vu ,
u2

v ). Note that when xy = 10 and xy = 20, then u = 10
and u = 20. This shows that G(u, v) takes the lines u = 10 and u = 20 in the uv-plane to the hyperbolas
xy = 10 and xy = 20 in the xy-plane. Similarly, G(u, v) takes the lines v = 20 and v = 40 in the uv-plane
to the graphs of x2y = 20 and x2y = 40 in the xy-plane. Now let’s look at the four corners of the rectangle
R in the uv-plane determined by the lines u = 10, u = 20, v = 20, v = 40. The lower left corner is (10, 20).
G(10, 20) = (2, 5) which is the lower left corner of the region D. G(10, 40) = (4, 2.5) which is the lower right
corner of D. Similarly, G(u, v) takes the other two corners of R to the remaining corners of D, so it follows
that G transforms R into D (by continuity of G(u, v) and the fact that for the point (10, 30) in the interior
of R, G(10, 30) = (3, 10

3 ) lies in the interior of D).

For the absolute value of the Jacobian of G(u, v) we have∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ =∣∣∣∣det(− v
u2

1
u

2u
v −u2

v2

)∣∣∣∣ =∣∣∣∣− 1

v

∣∣∣∣ = 1

v
.

Thus, ∫ ∫
D

exy dA =

∫ 40

20

∫ 20

10

eu · 1
v
du dv

=

∫ 40

20

(e20 − e10) · 1
v
dv

= (e20 − e10)

∫ 40

20

1

v
dv

= (e20 − e10) · (ln(40)− ln(20)) = (e20 − e10) · ln(2).

4.
∫ ∫

D

√
x+ y(x− y)2 dA, where D is the region bounded by the lines x = 0, y = 0.x+ y = 1.

Solution. Because the integrand has no obvious ant-derivative with respect to either variable, we try to
simplify it with a change of variables. If we choose u and v so that u = x+ y and v = x− y, then integrand
then becomes

√
uv2, which we can anti-differentiate. We can solve the system of equations u = x + y and

v = x− y for x and y in terms of u and v and this will give the required change of variables. Upon doing so,
we have x = u+v

2 and y = u−v
2 . Call this transformation G(u, v). From this, it follows that

∂(x, y)

∂(u, v)
= det

(
1
2

1
2

1
2 − 1

2

)
= −1

2
,

from which we get

∣∣∣∣∂(x,y)∂(u,v)

∣∣∣∣ = 1
2 . We now have to see what region in the uv-plane gets transformed to the

region D in the xy plane, which is the triangle below:

.

One edge of the triangle D is x + y = 1. In terms of u and v, this equation becomes u = 1. Thus, G(u, v)
transforms the line u = 1 in the uv plane to the line x+ y = 1 in the xy-plane. Similarly, the equation x = 0
in terms of u and v becomes u = y, v = −y, so that v = −u, while the equation y = 0 yields u = x, v = x,
so that v = u. Thus, if we let D0 be the region in the uv-plane bounded by the lines u = 1, v = −u, and
v = u,
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,

we see that G(D0) = D. Thus,∫ ∫
D

√
x+ y(x− y)2 dA =

∫ ∫
D0

√
uv2

1

2
dA

=
1

2

∫ 1

0

∫ u

−u

√
uv2 dv du

=
1

2

∫ 1

0

√
u(

v3

3
)v=u
v=−u du

=
1

6

∫ 1

0

2u
7
2 du

=
1

3
· 2
9
(u

9
2 )

∣∣∣∣1
0

=
2

27
.

5.
∫ ∫

D
1

(x2+y2)
3
4
dA, where D is the disk centered at the origin in R2 with radius R.

Solution. This is an improper double integral, as f(x, y) is unbounded on D (since lim(x,y)→(0,0) f(x, y) tends

to infinity). Let Dϵ denote the region ϵ2 ≤ x2 + y2 ≤ R2, and we consider limϵ→0

∫ ∫
Dϵ

f(x, y) dA. If this

limit exists, it equals
∫ ∫

D
1

(x2+y2)
3
4
dA. We have

lim
ϵ→0

∫ ∫
Dϵ

f(x, y) dA = lim
ϵ→0

∫ ∫
Dϵ

1

(x2 + y2)
3
4

dA

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

1

(r2)
3
4

r dr dθ

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

1

r
3
2

r dr dθ

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

r−
1
2 dr dθ

= lim
ϵ→0

∫ 2π

0

2
√
r

∣∣∣∣R
ϵ

dθ

= lim
ϵ→0

∫ 2π

0

2(
√
R−

√
ϵ) dθ

= lim
ϵ→0

4π(
√
R−

√
ϵ)

= 4π
√
R.

6.
∫ ∫

R2 e
−x2−y2

dA.
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7.
∫ ∫

D
1

x2y2 dA, where D is the set of points in R2 satisfying 2 ≤ x ≤ ∞ and 2 ≤ y ≤ ∞.

Solution. We may test convergence of the double integral by integrating increasing rectangles (or squares)
whose lower left corner is (2,2). Let Da denote the square [2, a]× [2, a] with 2 ≤ a < ∞. If the limit exists
as a → ∞, it equals

∫ ∫
D

1
x2y2 dA.

lim
a→∞

∫ ∫
Da

1

x2y2
dA = lim

a→∞

∫ a

2

∫ a

2

1

x2y2
dy dx

= lim
a→∞

∫ a

2

− 1

x2y

∣∣∣∣y=a

y=2

dx

= lim
a→∞

∫ a

2

− 1

ax2
+

1

2x2
dx

= lim
a→∞

(
1

ax
− 1

2x
)

∣∣∣∣x=a

x=2

= lim
a→∞

{( 1
a2

− 1

2a
)− (

1

2a
− 1

4
)}

=
1

4

8. Compare your answer in problem 7 with (
∫∞
2

1
x2 dx)2. Can you explain the relation between these two

answers?

Solution. A calculation similar, though easier, than the one above shows that lima→∞
∫ a

2
1
x2 dx = 1

2 . The
answer in problem 12 is the square of the answer in problem 11, since∫ a

2

∫ a

2

1

x2y2
dy dx =

∫ a

2

{
∫ a

2

1

x2y2
dy} dx

=

∫ a

2

1

x2
{
∫ a

2

1

y2
dy} dx

= {
∫ a

2

1

y2
dy}

∫ a

2

1

x2
dx

= {
∫ a

2

1

y2
dy}2,

and the limit of a square is the square of the limits, assuming both limits exist.

9. OS, Section 5.4: # 233, 241, 245, 281.

233. Solution: The key point is to insure that the plane z + y + z = 9 does not intersect domain in the

xy-plane. The required triple integral is∫ 2

0

∫ 7−x

x2+1

∫ 9−x−y

0

dx dy dx.

241. The required triple integral in cylindrical coordinates is∫ π
2

0

∫ 3

0

∫ 1

0

z · r dz dr dθ.

245. In cylindrical coordinates, the integral is∫ θ

π

∫ 2

1

∫ 3

2

er · r dz dr dθ,

where θ is the upper bound of the polar region
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.

Using that x =
√
3y and x2 + y2 = 1 (say), the intersection of the line with the circle of radius one, occurs

when x = −
√
3
2 and = − 1

2 , so that θ = 7π
6 .

281. The equation of the sphere can be re-written as x2 + y2 + (z − 1)2 = 1, which in spherical coordinates
becomes ρ = 2 cos(θ). As in previous examples finding the volume between a sphere and a cone, we need
the angle the cone makes with the z-axis. The cone is easily seen to be a 45 degree cone, so that 0 ≤ ϕ ≤ π

4 .
Thus, the required triple integral is∫ 2π

0

∫ π
4

0

∫ 2 cos(ϕ)

0

ρ2 sin(ϕ) dρ dϕ dθ.

In cylindrical coordinates, the cone is z = r and the sphere is z =
√
1− r2+1. Setting these equations equal

to each other gives r = 1, which means the domain of integration in the xy-plane is the unit circle centered
at the origin. Thus, in cylindrical coordinates, the required integral is∫ 2π

0

∫ 1

0

∫ √
1−r2+1

r

r dz dr dθ.

10. Calculate
∫ ∫ ∫

B
y2z2 dV for B the solid bounded by the paraboloid x = 1−y2−z2 and the plane x = 0.

Solution. If we let D denote the unit disk in the yz-plane, then∫ ∫ ∫
B

y2z2 dV =

∫ ∫
D

∫ 1−y2−z2

0

y2z2 dx dA

=

∫ ∫
D

(1− y2 − z2)y2z2 dA

=

∫ 2π

0

∫ 1

0

(1− r2)(r cos(θ))2(r sin(θ))2 rdrdθ

=

∫ 2π

0

∫ 1

0

(r5 − r7) cos2(θ) sin2(θ) drdθ

= (
1

6
− 1

8
)

∫ 2π

0

cos2(θ) sin2(θ) dθ

=
1

24

∫ 2π

0

1

8
− 1

8
cos(4θ) dθ (double angle formula twice)

=
1

24
· {θ

8
− 1

32
sin(4θ)}2π0

=
1

24
· 2π
8

=
π

96
.

11. Calculate
∫ ∫ ∫

B
z3
√
x2 + y2 + z2 dV , for B the solid hemisphere with radius 1 and z ≥ 0.

8



Solution. Using spherical coordinates,∫ ∫ ∫
B

z3
√
x2 + y2 + z2 dV =

∫ 2π

0

∫ π
2

0

∫ 1

0

(ρ cos(ϕ))3
√

ρ2ρ2 sin(ϕ) dρϕdθ

= 2π

∫ π
2

0

∫ 1

0

ρ6 cos3(ϕ) sin(ϕ) dρdϕ

=
2π

7

∫ π
2

0

cos3(ϕ) sin(ϕ) dϕ

=
2π

7
· (−cos4(θ)

4
)

∣∣∣∣π2
0

=
π

14
.

12. Let B0 be the parallelepiped spanned by the vectors 2⃗i− j⃗ + k⃗, 3⃗i+ k, 4⃗j − k⃗ and B the parallelepiped
obtained by translating the corner of B0 at the origin to the point (3,2,1). Calculate

∫ ∫ ∫
B
2x− y+3z dV .

Solution. We first write the transformation G(u, v, w) that takes the unit cube in uvw-space to B0. For a
reminder on how to do this, see the lecture of Thursday, April 8. G(u, v, w) = (2u+3v,−u+4w, u+ v−w),
with (u, v, w) ∈ [0, 1] × [0, 1] × [0, 1]. Now to translate B0 to B, we just add (3, 2, 1) to the coordinates of
G(u, v, w) to get a the transformation H(u, v, w) = (2u + 3v + 3,−u + 4w + 2, u + v − w + 1), which takes
the unit cube in uvw-space to B. Taking the Jacobian of H(u, v, w), we get

Jac(H) = det

2 −1 1
3 0 1
0 4 −1

 = 1.

Thus,∫ ∫ ∫
B

2x− y + 3z dv =

∫ 1

0

∫ 1

0

∫ 1

0

{2(2u+ 3v + 3)− (−u+ 4w + 2) + 3(u+ v − w + 1)} · 1 dV

=

∫ 1

0

∫ 1

0

∫ 1

0

8u+ 9v − 7w + 7 du dv dw

=

∫ 1

0

∫ 1

0

11 + 9v − 7w dv dw

=

∫ 1

0

31

2
− 7w dw

= 12.

9


